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Abstract (in French)

Pendant ce stage à Argonne, j’ai travaillé sur les opérations collectives de MPICH-G2,
l’implémentation de MPI à Argonne Nat’l Laboratory, configurée avec le support de com-
munications Globus-2 : c’est le seul support qui permette de faire du metacomputing, car
il parle plusieurs protocoles différents.

La première partie du stage a consisté à implémenter une méthode fiable et reproductible
de mesure de performance de la fonction MPI Bcast, et à intégrer ce code dans le logiciel
“perftest” d’évaluation de performance distribué avec MPICH.

Ensuite, j’ai enrichi MPICH-G2 de la connaissance de la topologie des processeurs sur
lesquels s’exécutent les processus MPI.

La troisième partie du travail a consisté à ré-écrire les 5 opérations collectives les plus
utilisées pour les optimiser : ma nouvelle implémentation tient compte de la topologie
sous-jacente des processeurs et des liens de communication qui les relient, afin par exem-
ple de limiter les communications intercontinentales via TCP qui présentent une insup-
portable latence.

Enfin, j’ai rendu cette information sur la topologie des processeurs accessible (de façon
sécurisée) au niveau utilisateur, de sorte que le programmeur puisse en tirer parti pour
optimiser ses applications MPI.
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During my stay in Mathematics & Computer Science Division at Argonne National
Laboratory, I focused on the collective operations in MPICH-G21, a particular communi-
cation “device” (Globus-2) of Argonne’s implementation of MPI2. That “device” relies on
Globus3 to offer a grid-enabled implementation of MPI and constitutes a real step towards
metacomputing on heterogeneous distributed computing systems [3].

1 Performance evaluation of MPI Bcast

The BroadCast operation4 is one of the most widely used collective operations of MPI.
As a user writes a parallel program using the Message Passing paradigm, he needs to
determine what MPI library will be the most efficient for his application. Thus accurate
measurements of MPI Bcast performance are required.

In the very first part of my work, I implemented an already existing methodology [2]
to time MPI Bcast in a fair and reliable way.

1.1 The difficulties in timing MPI Bcast

To obtain reproducible results, it is obvious that we cannot time only one MPI Bcast: we
need to measure the time it takes to perform several MPI Bcast operations and divide
the total time by the number of MPI Bcasts posted.

When posting several MPI Bcast repeatedly, the broadcast messages proceed through
the network concurrently: that effect is called pipelining effect [2] as illustrated on figure 1.
That is why the algorithm shown on figure 2 is not correct: it gives only a lower bound for
the time it takes to broadcast.

Posting an MPI Barrier between each MPI Bcast eliminates the pipelining effect
preventing two MPI Bcasts from being in progress concurrently (see figure 3). But we
would then need to evaluate the time it takes to perform an MPI Barrier facing the
same problems as for MPI Bcast. Note that the MPI Barriers can also proceed concur-
rently with the preceding and following MPI Bcasts (see figure 4).

Several other difficulties are presented in the article [2].

1see: http://www.globus.org/mpi.
2Message Passing Interface, see: http://www.mcs.anl.gov/mpi.
3see: http://www.globus.org.
4MPI Bcast: one so called “root” process sends a piece of data to all the other processes in the same set;

for more details, see [4].
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wire
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send send send

recv recvoverlap

what we really want to measure

with pipelining effect
what we actually measure

Figure 1: Consecutive MPI Bcasts proceed concurrently through the network.

Root process:
t0 = get time
for n=1 to MAX

MPI Bcast
t1 = get time

time to bcast =
t1 - t0
MAX

All other processes:
for n=1 to MAX

MPI Bcast

Figure 2: A too simple timing algorithm.

recvrecvrecv

send
barrier

send
barrier

send

Figure 3: Inserting MPI Barriers between the MPI Bcasts eliminates the pipelining
effect.

1.2 The new timing methodology

Before presenting the new methodology of the article [2], we need to introduce the LogP
model [1]. As shown on figure 5:

� the time it takes a process to send a message is the send overhead ��� ,

� the time it takes a process to receive a message is the receive overhead ��� ,
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send barrier send barrier send

recvrecvrecv

Figure 4: Inserting MPI Barriers between the MPI Bcasts is not a good solution.

� the amount of time it takes a byte to transit from its source to its destination is the
wire latency

�
,

� the minimum interval between consecutive sends/receives is the gap � .

� �

� �

g

L

L

msg size

Figure 5: Relevant parameters of the LogP model.

The LogP model is both simple and complete enough to be much more realistic than
the PRAM model. For simplicity, we consider � ����� � ����� � .

Figure 6 shows how the different processes involved in an MPI Bcast receive and
relay the message using a binomial-tree algorithm (root process = 0). We need to measure
the operation latency 	 � ��
����
�� . The idea consists in measuring the operation latencies
	 ��� for each process � , and 	 � ������� � ��	 ��� � .

Figure 7 reproduces the algorithm used to measure 	 ��� as found in the article [2].
This algorithm is repeated for every process � which sends an acknowledgement (ack )
to the root process after completing each MPI Bcast. The root does not start another
MPI Bcast until it receives this ack. The overhead to send/receive the acknowledge-
ment is corrected very easily measuring the latency of a single point-to-point message
from process � to the root.

The extra MPI Barrier and MPI Bcast before the actual measurement is used to
“prime the line”: the first communication might take more time than the following com-
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Figure 6: Binomial-tree algorithm for MPI Bcast from root = � � .

Root process:
t0 = get time
for n=1 to MAX

MPI Send ack to i
MPI Recv ack from i

t1 = get time

ack timei =
t1 - t0
2 * MAX

MPI Barrier
MPI Bcast
MPI Recv ack from i

t0 = get time
for n=1 to MAX

MPI Bcast
MPI Recv ack from i

t1 = get time

OLi =
t1 - t0
MAX

- ack timei

Process i:
for n=1 to MAX

MPI Recv ack from root
MPI Send ack to root

MPI Barrier
for n=1 to MAX+1

MPI Bcast
MPI Send ack to root

All other processes:
for n=1 to MAX+1

MPI Bcast

Figure 7: The new methodology to time MPI Bcast: fair and reliable.
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munications. There might be some acknowledgements which arrive to the root before the
latter completes the MPI Bcast: that does not matter because such an ack is certainly not
coming from the process with the largest 	 ��� .

1.3 The implementation in MPICH’s performance test suite

I implemented that new methodology to time MPI Bcast accurately as a plug-in module
of the performance test suite “perftest” distributed with MPICH. The code was written in
C because the MPI Standard defines only Fortran and C bindings and the rest of “perftest”
is written in C. The code I wrote is available at
http://www-unix.mcs.anl.gov/˜lacour/argonne2001/perftest.
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Figure 8: Results of the new timing methodology compared with the previous simple
algorithm’s results. MPI Bcast is performed for various message sizes with 6 processes.

This implementation was tested and a few graphs were plotted (see figure 8 and the
web site mentioned above): as expected they show that MPI Bcast takes more time
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when it is evaluated with the new methodology because it does not take advantage of
the pipelining effect.

2 MPICH-G2 aware of the underlying topology

2.1 Topology of processes and protocol levels

The Globus-2 device of MPICH can be used to run MPI programs in “computational
grids”. These environments are highly heterogeneous: they can be made of several LANs
(Local-Area Networks) connected over a WAN (Wide-Area Network) using the TCP pro-
tocol; each LAN can be composed of different machines communicating via TCP over
the LAN. A given machine can be vendor-MPI equipped: this is an efficient MPI library
provided by the vendor (SGI, IBM, Sun, ...) allowing fast MPI communications between
processes running on the same host. Another machine can have several CPUs exchang-
ing messages via shared memory. The IBM SP can be equipped with a high-performance
switch to allow its nodes to communicate quickly, a cluster of PCs can have its nodes
connected with Myrinet, ... All these communication protocols have very different band-
widths and latencies. They can be sorted as in table 1 in function of their latencies.

level 0 � level 1 � level 2 � level 3, 4, ...

WAN-TCP � LAN-TCP � localhost-TCP �
shared memory
vendor MPI
MyriNet

Table 1: Sorted protocols in function of their latencies.

MPICH-G2 assumes that the TCP protocol is present on all machines and every host
can communicate directly with all the other machines. Typically, the TCP latency over a
WAN is ������� times the latency over a LAN. A TCP communication between two pro-
cesses running on the same machine is faster than between two different machines in the
same LAN because the TCP packets do not go onto the wire: the network card is bypassed
thanks to an optimization of the TCP protocol.

A realistic example of configuration is given on figure 9: Argonne Nat’l Lab. (ANL,
Chicago) and Lawrence Livermore Nat’l Lab. (LLNL, California) are connected over a
WAN. Baby and Blue are 2 IBM SPs equipped with 4-way SMP nodes connected over
IBM’s high-performance switch. Denali is a 96-CPU Origin 2000 with SGI’s implemen-
tation of MPI installed and Pitcairn is an 8-CPU Sun Enterprise without vendor-MPI (its
only communication protocol is TCP). Figure 9 shows that the processes on Denali will
never use the level-2 protocol (localhost-TCP) since they have a more efficient way of
communicating with SGI’s MPI.
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Figure 9: An example of realistic configuration.

The WAN level, LAN level and vendor-MPI level had already been conceived. I sug-
gested the introduction of the localhost-TCP level and I wrote the code for this addition.

2.2 Colors and clusters

The Globus-2 device provides an access to the channels of each process. A channel can
be seen as the list of protocols a process can speak, sorted from the fastest (in terms of
latencies) to the slowest protocol (TCP). As defined in [5], a cluster at level � is a set of
processes which can talk together using their protocol of level � . In the example of fig-
ure 9, the clusters are those shown in table 2.

At each level, all the processes which belong to the same cluster are affected the same
color. At a given level, each cluster has a unique color. Table 3 shows the colors of each
process at every level.
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level clusters
0

� � � , � � , ��� , ��� , ��� , ��� , ��� , ��� , ��	 , ��
 , � ��� , � � � �
1

� � � , � � , ��� , ��� � � ��� , ��� , ��� , ��� , ��	 , ��
 , � ��� , � � � �
2

� � � , � � � � ��� , ��� � � ��� , ��� , ��� , ��� � � ��	 , ��
 , � ��� , � � � �
3

� � � , � � � � ��� , ��� , ��� , ��� � � ��	 , ��
 , � ��� , � � � �
4

� ��� , ��� � � ��� , ��� � � ��	 , ��
 � � � ��� , � � � �
Table 2: The clusters of processes in the particular example.

level � � � � ��� ��� ��� ��� ��� ��� ��	 ��
 � ��� � � �
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 1 1 1 1
2 0 0 1 1 2 2 2 2 3 3 3 3
3 0 0 1 1 1 1 2 2 2 2
4 0 0 1 1 2 2 3 3

Table 3: The colors of the clusters and processes.

Inside each cluster at level � , the processes are enumerated and assigned a unique
cluster identifier (cluster ID), unless they might have already been enumerated at any
deeper level. Table 4 shows the cluster IDs for the particular configuration of figure 9.

level � � � � ��� ��� ��� ��� ��� ��� ��	 ��
 � ��� � � �
0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 0 0 1 1 1 1
2 0 0 0 1 0 0 0 0 0 0 0 0
3 0 1 0 0 1 1 0 0 1 1
4 0 1 0 1 0 1 0 1

Table 4: The cluster IDs of the processes at each protocol level.

2.3 Automatic computation of the colors and cluster IDs

The Globus system provides information about the channels. A code was already writ-
ten by Nick Karonis to generate the tables of colors and cluster IDs given the channels
(sorted protocol lists). I corrected and tested that implementation and I integrated it into
the Globus-2 device of MPICH. Both tables (colors and cluster IDs) are equivalent: they
provide the same information on the topology. However I chose to keep both of them
in memory because both representations of the topology will be directly used later (see
section 2.5): the aim of the Globus-2 device is high-performance, keeping both tables in
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memory avoids needless re-computations.

This information is computed dynamically each time a communicator5 is created and
both tables are included into the communicator’s data structure. Of course, they are de-
stroyed (and memory freed) as the communicator vanishes.

2.4 The automatic determination of the LAN

The LAN which a process belongs to is the only value the Globus system does not provide.

� I envisaged an automatic determination of the LAN counting the number of “hops”
(routers) separating every processors, using the TTL field (“time to live”) of the TCP
headers, just like the UNIX command traceroute. However that requires to use
“raw TCP sockets” demanding root’s priviledges: MPICH is a user-level library so
the idea was abandonned.

� Evaluating the TCP-latency between two processes could also be used to determine
whether both processes are in the same LAN or not (using a ping-like method),
but that is not reliable enough and some firewalls would filter that kind of packets.
Moreover it could take a very long time to evaluate the latency for every couple of
processes.

� Another idea consists in comparing the IP addresses of the processes to guess if
they are on the same LAN or not. However that method is not reliable since we can
perfectly imagine that two machines are in the same logical IP domain but located
on different continents.

Finally, we decided to rely on the user to specify (optionally) the LAN through an en-
vironment variable.

2.5 The sets of communicating processes

In the example of figure 9, if process � � broadcasts a message (MPI Bcast, root = � � ), we
would like to see the following scheme:

1. � � sends the message to ��� using the slowest protocol (WAN-TCP),

2. � � sends to ��� , ��� sends to ��	 ,

3. � � sends to � � , ��� sends to ��� , ��� sends to ��� , ��	 sends to � ��� ,
4. ��� sends to ��� , ��� sends to � � , ��	 sends to ��
 , � ��� sends to � � � .
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level sets of communicating processes
0

� � � , ��� �
1

� � � , ��� � � ��� , ��	 �
2

� � � � � ��� , ��� � � ��� � � ��	 �
3

� � � , � � � � � � , ��� � � ��	 , � ��� �
4

� ��� , ��� � � ��� , ��� � � ��	 , ��
 � � � ��� , � � � �
Table 5: Sets of communicating processes at each level.

That scheme minimizes the communications through the slowest protocols (high-latency
communications) and executes them first. In that particular case, the “sets of communicat-
ing processes” are those shown in table 5.

I implemented the generation of the sets of communicating processes using the color
and cluster ID tables. These sets are needed by every optimized topology aware MPI col-
lective operation (see section 3). These sets allow each process to guess from what process
it will receive a message and to what other process it will have to relay the message. The
important point is that the generation of these sets requires no communications between the
processes: that generation is very fast because every process computes the sets in which it
will be involved locally.

To make it easier to compute the sets of communicating processes from the cluster
ID table, I had the idea to rename the clusters such that the root process of an asymetric
collective operation6 have only zeros as cluster IDs at each level. Inside each cluster at
every level, there is a master process (the “representative” of the cluster at the given level):
this particular process has cluster ID = 0 at any level greater than or equal to the given
level. In the particular configuration taken as an example (table 4), process � � is a master
process at every level (it might be the root of an asymetric collective operation), process

� � is never a master, process � 	 is the representative (master) of its clusters at levels 4, 3,
2. At level � , a set of communicating processes is made of the master processes of the
clusters at level � ��� .

The code7 I wrote was fully (and successfully) tested on both simulated and real con-
figurations. I paid attention to write an optimized code, helping the compiler (explic-
iting the constants, defining the variables as locally as possible, ... to produce high-
performance executable files). All the return values of the functions called are always
checked. The code was written in C because the rest of the software (MPICH) is in C8 and
also because we need high performance and have good C-compilers.

5Roughly speaking, a communicator is a set of processes in MPI terminology. For more details, see [4].
6The “asymetric” collective operations are those with a particular root process specified: MPI Bcast,

MPI Gather, MPI Scatter, MPI Reduce, ...
7See my web page: http://www-unix.mcs.anl.gov/˜lacour/argonne2001/topology.
8Serious people doing some software engineering don’t write their programs neither in Prolog nor in

Lisp.
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3 Topology aware collective operations

A point-to-point communication between two processes can occur if and only if they both
belong to the same “set of communicating processes” (as defined in section 2.5). Each pro-
cess executing a topology aware MPI collective operation starts with the communications
inside the set of communicating processes at level � (highest latency) and finishes with
the set at the deepest level (fastest protocol). Inside a set of communicating processes at
a given level (i.e.: using a given protocol), the communication pattern depends on the
following parameters:

� the message size,
� the number of processes (� ) involved in the set,
� the communication latency (

�
) and bandwidth,

� the send/receive overheads � ����� � ����� � .

The following MPI functions were implemented in a topology aware manner and suc-
cessfully tested (MPICH-G2 passed the MPICH test suite). The source codes are available
at http://www-unix.mcs.anl.gov/˜lacour/argonne2001/taco.

3.1 Topology aware MPI Barrier

The flat-tree algorithm (see figure 10) for MPI Barrier works as follows: each process
of the set sends an empty message to all the processes of the set and receives an empty
message from all the processes too: this pattern can lead to network congestion if there
are too many processes involved in the set. However it is used at the WAN-TCP protocol
level because the users of MPICH-G2 usually run their applications over few LANs and
the number of processes which communicate at the WAN-TCP level are not numerous.
As illustrated on figure 11, the time it takes to perform MPI Barrier using the flat-tree
algorithm is (� is the number of processes in the set):� 
�� � � � � � � � if

��� � � � ��� ���

�� � �

� � if
��� � � � ��� ���

The hypercube algorithm is more scalable and used for all the other protocol levels. In
this pattern (see figure 12), each process notifies its � � � � � neighbors in the hypercube that
it has reached the barrier and waits for its � � � � � neighbors to reach the barrier too. Then
each process sends a “GO” signal to its � � � � � neighbors and waits for the “GO” signal
from its � � � � � neighbors. In case the number of processes in the set is not a power of � ,
one just needs to add some virtual processes to reach the next power of � . The time it
takes to perform MPI Barrier using the hypercube algorithm is (see figure 13):� 
�� ���	�
� � � � ��� if �

� ��
�
�

���
� � � � ��� �

�� � � � �  � �
� � � � ��� � � if �

� ��
�
�

���
� � � � ��� �
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Figure 10: A flat tree.
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Figure 11: Flat-tree MPI Barrier for � ��� at process � .
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Figure 12: Process � communicating with its 3 neighbors in a hypercube of dimension 3.

Figure 14 shows it is more interesting to use the flat-tree algorithm to perform MPI Barrier
when the latency is high (WAN-TCP). The number of LANs interconnected cannot rea-
sonably be very high, so the number of processes communicating at the WAN-TCP pro-
tocol level is small. Figure 15 shows it is more efficient to use the hypercube algorithm
when the latency is small (fast protocols): the users of MPICH-G2 generally run their MPI
applications on a few large vendor MPI equipped machines with many processes running
on a single machine.
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Figure 13: Hypercube MPI Barrier for � � ��� at process � .
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Figure 14: Simulated comparison between the flat-tree and the hypercube algorithms for
MPI Barrier with a high latency.
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Figure 15: Simulated comparison between the flat-tree and the hypercube algorithms for
MPI Barrier with a low latency.

3.2 Topology aware MPI Bcast

In the flat-tree algorithm, the root process sends the message to each process in the set.
That might result in network congestion if there are too many processes involved. The
time it takes to perform a flat-tree MPI Bcast is: 
�� � �

� � (see figure 16).
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Figure 16: An example of flat-tree MPI Bcast with root = 0 and p = 4.

A binomial tree of degree � (
� � ) is just one node. A binomial tree of degree � (

���
) is a

node with � sons which are � binomial trees of degrees
� � , � � , � � , ...,

����� � . Thus a binomial
tree of degree � is made of �

�
nodes. Figure 17 shows a binomial tree of degree � (16

nodes).
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Figure 17: A binomial tree of degree � (16 nodes).

Using a binomial-tree algorithm, if process � is the root of an MPI Bcast in a set of
8 processes, then the communication pattern is the one shown on figure 6. To perform a
binomial-tree MPI Bcast, 
�� � ��� � � ���
� � � � ��� .
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Figure 18: Simulated comparison between the flat-tree and the binomial-tree algorithms
for MPI Bcast with a high latency.

As illustrated on figures 18 and 19, I chose the flat-tree algorithm to broadcast at pro-
tocol level 0 (WAN-TCP, high latency, few processes) and the more scalable binomial-tree

– 16 –
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algorithm at all the other levels (small latencies and possibly large number of processes).
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Figure 19: Simulated comparison between the flat-tree and the binomial-tree algorithms
for MPI Bcast with a low latency.

3.3 Topology aware MPI Gather and MPI Scatter

As for MPI Bcast, MPI Gather and MPI Scatter9 are implemented using a flat-tree al-
gorithm at the WAN-TCP protocol level and a binomial-tree algorithm at any other level.
For MPI Scatter, the trees are traversed from the top (the root) down to the bottom (like
MPI Bcast), while they are traversed from the bottom up to the top for MPI Gather.

The two major problems were essentially technical and are not detailed here: they con-
cerned non-contiguous MPI data types and also when the number & type of the items sent
do not match those of the items received (which is allowed by the MPI Standard). Another
difficulty was to allocate enough memory for each process to store temporarily some data
items which would be relayed to other processes. For instance, in an MPI Scatter from
root = � � to 12 other processes using a binomial-tree algorithm (see figure 17), process � 	

will receive from � � the data items for ��	 , ��
 , � ��� , � � � , � � � ; so ��	 must allocate memory to
store the data to relay to ��
 , � ��� , � � � , � � � , and ��	 must also be aware it must send to � ��� the
data destined to � � � .

9See the semantics of the collective operations in [4].
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Sébastien Lacour MPICH-G2 Collective Operations

3.4 Topology aware MPI Reduce

MPI Reduce10 performs a mathematical operation on all the data items provided by all
the processes in the MPI communicator and stores the result at the root process. The
operation is supposed to be associative, but not compulsorily commutative. Let � � be the
data item provided by process � � , then the result of MPI Reduce for the operation � must
be: � ��� � ��� � � ��������� � � � � � � .
Commutative operations

When the operation � is commutative, the computation order does not matter. Once
again, I implemented MPI Reduce using a flat-tree algorithm at protocol level 0 (WAN-
TCP) and a binomial-tree algorithm at any other level (low latency protocols). For exam-
ple, an MPI Reduce using a binomial-tree algorithm to root = � � with the commutative
operation � in a set of 7 processes is made of the following steps (refer to figure 17):

1. ��� sends � � to ��� , ��� sends � � to ��� , � � sends � � to � � ;
2. ��� computes � � � � � � � � � , ��� computes � � � � � � � � � , � � computes � � ��� � ��� � � ;
3. ��� sends � � to ��� , ��� sends � � � to � � ;
4. ��� computes � � � � � � � � � � � , � � computes � � � � � � � � ��� � � � ;
5. ��� sends � � � � to � � ;
6. � � computes the final result ��� � � � � � � � � � � � � � � ��� � � ��� � � � � � � � ��� � � � � � � � ��� � � � .

Non-commutative operations

Using the sets of communicating processes to perform an MPI Bcast may give a differ-
ent result from the one imposed by the MPI Standard because the topology information
imposes its own computation order, depending on the root process for instance. There
were two possibilities:

1. Either ignoring the topology and protocol levels: that solution may incur several
WAN-TCP latencies in sequence, hence very bad performance results;

2. Or gathering all the data items to the root using the optimized topology aware
MPI Gather I wrote, and leaving the root process compute all the � � � � � operations
(instead of distributing the computation tasks to the nodes as in the commutative
case).

10For more details on MPI Reduce, see [4].
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I chose to implement the second solution because incurring several WAN-TCP laten-
cies ( � ����� ms each) takes much longer than computing � � � � � operations on one node
(even for matrix-matrix multiplication). That is true if the message size is below a certain
threshold; this threshold reflects the tradeoff between:

� distributed computations and several WAN-TCP latencies in sequence,
� centralized computations and only one WAN-TCP latency.

The threshold cannot be calculated exactly because it depends on both the WAN-TCP la-
tency and the speed & load of the CPU of the root process, but it can be estimated to be
higher than the usual message sizes (large matrices). For an order of magnitude, during a
typical WAN-TCP latency ( � ����� ms), a 1 GHz CPU can perform 200 million elementary
assembly operations; if there are 100 � operations to perform (that is an MPI Reduce over
101 processes working in parallel), a single node can do 2 million elementary operations
during one WAN-TCP latency.

Making this particular choice, I also chose not to comply with an advice to implementors
taken from [8], but the implementation remains fully compliant with the MPI Standard
requirements:

It is strongly recommended that MPI Reduce be implemented so that the same
result be obtained whenever the function is applied on the same arguments, appearing
in the same order. Note that this may prevent optimizations that take advantage of the
physical location of the processors.

In my implementation, depending on the root process, the computation may occur with
different associativities and on different architectures (with different round-off modes,
floating-point number representations...), hence possibly slightly different results.

3.5 Future work

Time did not allow me to write a topology aware implementation of the nine other MPI
collective operations11. However I re-wrote the most widely used collective operations
and all the remaining functions look like the ones I implemented:

� MPI Gatherv can be made topology aware imitating MPI Gather,
� MPI Scatterv looks like MPI Scatter,
� MPI Scan is inspired from MPI Reduce.

A performance evaluation of the new implementation of the collective operations
could also be carried out to confirm the improvements.

11MPI Gatherv, MPI Scatterv, MPI Allgather, MPI Allgatherv, MPI Alltoall,
MPI Alltoallv, MPI Allreduce, MPI Reduce scatter, MPI Scan.
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Sébastien Lacour MPICH-G2 Collective Operations

4 The underlying topology now available at the user level

Some users of MPICH-G2 asked for a way to access the physical topology of the processes
from their applications. That could be useful for instance to create new communicators12

with MPI Comm split such that all the processes in each resulting communicator be in
the same LAN (Local-Area Network) for faster communications.

I implemented that feature in MPICH-G2 using the attribute caching facility attached
to each communicator. Thanks to two global “keys” added to the "mpi.h" include file,
the user now has an access to the number of protocol levels of each process in the com-
municator as well as to the “colors” (as defined in section 2.2) of the processes.

I also wrote two MPI example programs.

� A program to test that new feature and the robustness of the implementation: for
instance, the user does not have a direct access to the pointers to the arrays used by
the MPICH-G2 library to prevent him from modifying the internal data. The user
has only an access to a copy of the arrays.

� Another program to show the user of MPICH-G2 how to take advantage of the ac-
cess to the underlying topology in order to create a new communicator for each
LAN (allowing fast communications inside each new communicator).

All the source codes can be seen at:
http://www-unix.mcs.anl.gov/˜lacour/argonne2001/user access.

12Roughly speaking, a communicator is a set of processes in MPI terminology. For more details, see [4].
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